Mathematical analsys 1 - (12 cfu)

Prof. Domenico Mucci Tel. 0521 906959 - Fax. 0521 906950
  E-mail. domenico.mucci@unipr.it
 


Finalità

The course provides the basic mathematical instruments for a solid comprehension of the other courses.

(A-C) Docente: Emilio Acerbi - http://calcvar.unipr.it
(D-L) Docente: Marino Belloni - http://www2.unipr.it/~belmar68/
(M-P) Docente: Giuseppe Mingione - http://calcvar.unipr.it/
(Q-Z) Docente: Domenico Mucci - http://calcvar.unipr.it<

Programma

and logarithm; elementary functions.
Logic and set theory; equivalence and ordering.
Numerical sets: natural numbers and induction principle; combinatorial calculus and elementary probability; integers and rationals; real numbers and supremum; complex numbers and their n-th roots.
Real functions: maximum and supremum; monotone, odd and even functions; powers; irrational functions; absolute value; trigonometric, exponential and hyperbolic functions; graphs of the elementary functions and geometric transformations of the same.
Sequences: topology; limits and related theorems; monotonic sequences; Bolzano-Weierstrass and Cauchy theorems; basic examples; the Neper number “e”; recursive sequences; complex sequences.
Continuous functions: limits of functions; continuity and properties of continuous functions (including intermediate values, Weierstrass theorem); uniform continuity and Heine-Cantor theorem; Lipschitz continuity; infinitesimals.
Properties of differentiable functions (including Rolle, Lagrange, Hopital theorems); Taylor expansion (with Peano and Lagrange remainder); graphing a function.
Indefinite and definite integral: definition and computation (straightforward, by parts, by change of variables); integral mean and fundamental theorems; Torricelli theorem; generalised integrals: definition and comparison principles.
Numerical series: definition, convergence criteria, Leibniz and integral criteria.

Modalità d'esame

Written test divided into two parts followed by a colloquium.

Propedeuticità

None (but the student must have followed the preliminary course)

Testi consigliati

E. ACERBI e G. BUTTAZZO: "Primo corso di Analisi matematica", Pitagora editore, Bologna, 1997
D. MUCCI: “Analisi matematica esercizi vol.1”, Pitagora editore, Bologna, 2004

esamination exercises:
A. COSCIA e A. DEFRANCESCHI: "Primo esame di Analisi matematica", Pitagora editore, Bologna, 1997


Ultimo aggiornamento: 13-10-2009


Chiudi la finestra