( english version )
Logic networks ( 9 CFU )
Prof. Stefano Caselli
     Tel. 0521 905724 - Fax. 0521 905723           E-mail. stefano.caselli@unipr.it           Home page. http://www.ce.unipr.it/people/caselli

Finalità
The course objective is to introduce the basic techniques for analysis and design of synchronous digital systems. Both traditional methodologies and algorithmic techniques adopted in industrial Design Automation flows are presented.

Programma
Introduction to digital systems
Evolution of electronic technologies. Objectives and limitations of synchronous digital systems.

Combinational logic design
1 - Review: Canonical and general logic expressions (SP and PS). Analysis and synthesis of fully specified logic functions based on Karnaugh maps.
2 - Other two-level logic analysis and synthesis techniques: Incompletely specified logic functions. Multiple output circuits (multiple prime implicants/implicates method). Analysis and synthesis of NAND and NOR circuits.
3 - CAD tools for combinational network design: Quine-McCluskey algorithm. Espresso. Logic simulation.
4 - Multilevel logic and integrated circuit-based design: Expression factorization and decomposition. Combinational logic design based on standard MSI and LSI parts (Multiplexers, Decoders, Encoders, ROMs, AOI components).
5 - Programmable logic (PLA, PAL, GAL).
6 - Dedicated combinational circuits: Arithmetic circuits (adders, comparators, ALU). Transocoders. Parity and Hamming circuitry. XOR based circuits.
7 - Transient phenomena in combinational circuits: static and dynamic hazards.

Synchronous sequential logic design
1 - Mealy and Moore machines. Elementary logic circuits with delays and feedback. Fundamental mode operation.
2 - Basic memory elements: SR and D Latches; D, JK, and T Flip-Flops. Timing problems. Timing in synchronous circuits.
3 - Finite state automata: Automata description techniques (state diagrams, flow tables, description languages). State minimization.
4. Analysis and synthesis of synchronous sequential circuits: State encoding. State memory implementation with Flip-Flops and Latches.
5 - The synchronous/asynchronous interface: Flip-Flops with Preset and Clear commands. Management of asynchronous and pulsed inputs in synchronous circuits.
6 - Counters and Registers: Design of binary counters, Johnson counters, counters with arbitrary state encoding. Parallel registers and shift registers.
7 - Sequential programmable logic (FPGA).

Analysis and synthesis of complex digital systems
1 - Sequential circuit design based on standard integrated circuits (registers, counters, shift-registers, sequencers, MUXes, etc.).
2 - Complex circuit design by decomposition into datapath and control unit.
3 - Design techniques for pipelined circuits.
4 - Hardware description languages.


Modalità d'esame
The recommended exam modality is to undertake the two planned mid-term written tests during the teaching period. Alternatively, a single written test covering the whole course program must be passed in any of the scheduled official exam dates. Tests include both theory questions and design exercises.


Testi consigliati
Lecture notes from the instructor (available from the course web site).
C. Bolchini, C. Brandolese, F. Salice, D. Sciuto, Reti Logiche, Apogeo, 2004.
M.M. Mano, C.R. Kime, Reti Logiche, Pearson, 2008. (Edition 2002 covers only part of the course syllabus).

Testi d'approfondimento
M.M. Mano, Digital Design, 3/e, Prentice Hall, 2002.
R.H. Katz, Contemporary Logic Design, 1st Edition, Addison-Wesley, 1994.
R. Laschi, Reti Logiche, Esculapio, Bologna, 1994.
G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994.
 
stampa il programma ~ torna indietro